Calculate the slope (m) = $\dfrac{y_2-y_1}{x_2-x_1}$
Calculate $∆x = x_2-x_1$ and $∆y = y_2-y_1$
If $|∆x|>=|∆y|$
then assign $∆x$ = 1
$x_{i+1} = x_i + ∆x$
$∴ x_{i+1}= x_i + 1$
$y_{i+1} = y_i + ∆y = y_i + m∆x$
$∴y_{i+1}=y_i+m$
If $|∆x|<|∆y|$
then assign $∆y$ = 1
$x_{i+1} = x_i + ∆x = x_i + \dfrac{∆y}{m}$
$∴ x_{i+1}= x_i + \dfrac{1}{m}$
$y_{i+1}= y_i + ∆y$
$∴y_{i+1}= y_i + 1$
Calculate the slope (m) = $\dfrac{y_2-y_1}{x_2-x_1}$
Calculate the decision parameter $P_o$
$P_0 = 2dy-dx$
If $m <1$
If $P<0$
$x_{i+1}= x_i + 1$
$y_{i+1}=y_i$
$P_{i+1}=P_i+2dy$
If $P>=0$
$x_{i+1}= x_i + 1$
$y_{i+1}=y_i+1$
$P_{i+1}=P_i+2dy-2dx$
If $m >= 1$
If $P<0$
$x_{i+1}= x_i$
$y_{i+1}=y_i+1$
$P_{i+1}=P_i+2dx$
If $P>=0$
$x_{i+1}= x_i + 1$
$y_{i+1}=y_i+1$
$P_{i+1}=P_i+2dx-2dy$
Circle Equation:
$x^2+y^2=r^2$
$x^2+y^2-r^2=0$
$(x+1)^2+(y-\dfrac{1}{2})^2-r^2=d$
$x=0,y=r$
$1+(r-\dfrac{1}{2})^2-r^2=d$
$1+r^2-r+\dfrac{1}{4}-r^2=d$
$1.25-r=d$
This Algorithm uses eight ways symmetric property of Circle.
It plots $\dfrac{1}{8}^{th}$ part of the circle from 90° to 45°.
To in draw this arc we need to move along x-direction in every step and need to use the decision parameter to determine which y-position is closer to the actual path.